Quantum Computation Computation Is a Physical Process !

نویسنده

  • Artur Ekert
چکیده

As computers become faster they must become smaller because of the niteness of the speed of light. The history of computer technology has involved a sequence of changes from one type of physical realisation to another-from gears to relays to valves to transistors to integrated circuits and so on. Quantum mechanics is already important in the design of microelectronic components. Soon it will be necessary to harness quantum mechanics rather than simply take it into account, and at that point it will be possible to give data processing devices new functionality. Computers are physical objects, and computations are physical processes. This sentence, innocuous at rst glance, leads to non-trivial consequences, some of which we wish to explore in this paper. In particular we want to convince the reader that the theory of computation is not a branch of pure mathematics. Fundamental questions regarding computability and computational complexity are questions about physical processes that reveal to us properties of abstract entities such as numbers or ideas. Those questions belong to physics rather than mathematics (1,2). For the purpose of this presentation we deene a computation as a physical process that produces nal states, outputs, that depend in some desired way on given initial states, inputs. Quantum computers are deened as physical devices whose unitary dynamics can be regarded as the performance of a computation. Unlike classical computers, quantum computers can operate on quantum superpositions of diierent numbers. In recent years a new quantum theory of computation has been developed (3{8). It is in many ways diierent from the classical, purely mathematical theory of computation. A single quantum computer can follow many distinct computation paths all at the same time and produce a nal output depending on the interference of all of them. In particular, it has been shown recently that quantum computers can eeciently perform classes of computation , e.g. factorisation, which are believed to be intractable on any classical computer (9). This makes it highly desirable to construct such devices. This

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel vedic divider based crypto-hardware for nanocomputing paradigm: An extended perspective

Restoring and non-restoring divider has become widely applicability in the era of digital computing application due to its computation speed. In this paper, we have proposed the design of divider of different architecture for the computation of Vedic sutra based. The design of divider in the Vedic mode results in high computation throughput due to its replica architecture, where latency is mini...

متن کامل

A novel vedic divider based crypto-hardware for nanocomputing paradigm: An extended perspective

Restoring and non-restoring divider has become widely applicability in the era of digital computing application due to its computation speed. In this paper, we have proposed the design of divider of different architecture for the computation of Vedic sutra based. The design of divider in the Vedic mode results in high computation throughput due to its replica architecture, where latency is mini...

متن کامل

Computational Computation of the Efferene Structure on the Para phenylene diamine

In this study, the effect of fullerene electron mobility on the composition of paraphenylenediamine and stability was studied. Using quantum chemistry calculations, the first combination of paraffenylenediamine in a single-full-time region connected with fullerene through carbon atoms was reported. Experimental research was simulated and optimized using GIS software. Then the NBO calculations w...

متن کامل

Theoretical computation of the quantum transport of zigzag mono-layer Graphenes with various z-direction widths

The quantum transport computations have been carried on four different width of zigzag graphene using a nonequilibrium Green’s function method combined with density functional theory. The computed properties are included transmittance spectrum, electrical current and quantum conductance at the 0.3V as bias voltage.  The considered systems were composed from one-layer graphene sheets differing w...

متن کامل

Theoretical computation of the quantum transport of zigzag mono-layer Graphenes with various z-direction widths

The quantum transport computations have been carried on four different width of zigzag graphene using a nonequilibrium Green’s function method combined with density functional theory. The computed properties are included transmittance spectrum, electrical current and quantum conductance at the 0.3V as bias voltage.  The considered systems were composed from one-layer graphene sheets differing w...

متن کامل

فاز هندسی سامانه‌های اپتومکانیکی

In this paper, with respect to the advantages of geometric phase in quantum computation, we calculate the geometric phase of the optomechanical systems. This research can be considered as an important step toward using the optomechanical systems in quantum computation with utilizing its geometric phase.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1993